카이스트 감정 노동자 작업 부하 정도 측정 가능한 모델 개발... 정신건강 관리 혁신 이끈다
감정 억제하는 감정 노동자 정신 상태 파악... 정확도 87% 수준 피부 전도도·뇌파·심전도 등 다양한 데이터 통해 모델 구축
[녹색경제신문 = 이지웅 기자] 이의진 카이스트 교수 연구팀이 박은지 중앙대학교 교수팀, 미국 애크런 대학교의 감정노동 분야 세계적인 석학인 제임스 디펜도프 교수팀과 다학제 연구팀을 구성해 근로자들의 감정적 작업 부하를 실시간으로 추정해 심각한 정신 및 신체적 질병을 예방할 수 있는 인공지능 모델을 개발했다.
연구팀은 근로자가 감정적 작업 부하가 높은 상황과 그렇지 않은 상황을 87%의 정확도로 구분해 내는데 성공했다.
이 시스템은 기존의 설문이나 인터뷰 같은 주관적인 자기 보고 방식에 의존하지 않고도 감정적 작업 부하를 실시간으로 평가할 수 있다. 이에 근로자들의 정신건강 문제를 사전에 예방하고 효과적으로 관리할 수 있다는 장점이 있다. 고객 응대가 필요한 다양한 직종에 적용될 수 있는 해당 시스템은 콜센터뿐만 아니라 감정 노동자들의 장기적인 정신건강 보호에 크게 기여할 것으로 기대된다.
감정 노동자들의 감정적 작업 부하는 고용주로부터 요구되는 정서 표현 규칙과 관련이 깊다. 감정노동이 요구되는 상황에서는 자신의 실제 감정을 억제하고 친절한 응대를 해야 하기 때문에 대체적으로 근로자의 감정이나 심리적 상태가 표면적으로 드러나지 않는다.
기존의 감정-탐지 인공지능 모델들은 주로 인간의 감정이 표정이나 목소리에 명백하게 드러나는 데이터를 활용해 모델을 학습해왔기 때문에, 자신의 감정을 억제하고 친절한 응대를 강요받는 감정 노동자들의 내적인 감정적 작업 부하를 측정하기 힘들었다.
이러한 상황에서, 연구팀은 현업에 종사 중인 감정 노동자들을 대상으로 고객상담 데이터셋을 구축했다. 일반적인 콜센터 고객을 응대 시나리오를 개발하여 31명의 상담사로부터 음성, 행동, 생체신호 등 다중 모달 센서 데이터를 수집했다.
이를 통해 고객과 상담사의 음성 데이터로부터 총 176개의 음성특징을 추출했다. 또한 정서 표현 규칙으로 인한 상담사의 억제된 감정 상태를 추정하기 위해 상담사로부터 수집된 생체신호로부터 추가적인 특징을 추출했다.
피부의 전기적 특성을 나타내는 피부 전도도(EDA, Electrodermal activity) 13개의 특징, 뇌의 전기적 활성도를 측정하는 뇌파(EEG, Electroencephalogram) 20개의 특징, 심전도(ECG, Electrocardiogram) 7개의 특징을 비롯한 몸의 움직임, 체온 데이터로부터 12개의 특징을 추출했다. 총 228개의 특징을 추출해 9종의 인공지능 모델을 학습하여 성능 비교 평가를 수행했다.
학습된 모델은 상담사가 감정적 작업 부하가 높은 상황과 그렇지 않은 상황을 87%의 정확도로 구분해 냈다. 본인의 감정을 억누르고 친절함을 유지해야 하는 감정노동의 상황에서는 상담사의 목소리가 포함될 경우 오히려 모델의 성능이 떨어지는 현상을 보였다. 그 외에 고객의 목소리, 상담사의 피부 전도도 및 체온이 모델 성능 향상에 중요한 영향을 미치는 특징으로 밝혀졌다.
이 교수는 "감정적 작업 부하를 실시간으로 측정할 수 있는 기술을 통해 감정노동의 직무 환경 개선과 정신건강을 보호할 수 있다”며 "개발된 기술을 감정 노동자의 정신건강을 관리할 수 있는 모바일 앱과 연계하여 실증할 예정이다”고 말했다.
이번 연구는 과학기술정보통신부 정보통신기획평가원 ICT융합산업혁신기술개발사업의 지원을 받아 수행됐다.